资源类型

期刊论文 1404

会议视频 77

会议专题 1

年份

2024 1

2023 93

2022 137

2021 129

2020 101

2019 75

2018 84

2017 75

2016 63

2015 78

2014 51

2013 49

2012 40

2011 47

2010 53

2009 41

2008 43

2007 55

2006 52

2005 37

展开 ︾

关键词

能源 18

指标体系 12

智能制造 11

系统工程 10

开放的复杂巨系统 7

系统集成 7

钱学森 7

技术体系 6

电力系统 5

系统科学 5

2022全球十大工程成就 4

仿真 4

农业科学 4

可持续发展 4

战略性新兴产业 4

标准体系 4

电动汽车 4

系统 4

Agent 3

展开 ︾

检索范围:

排序: 展示方式:

Integrated design of legged mechatronic system

Chin-Yin CHEN, I-Ming CHEN, Chi-Cheng CHENG

《机械工程前沿(英文)》 2009年 第4卷 第3期   页码 264-275 doi: 10.1007/s11465-009-0060-7

摘要: This paper presents a system based on the integrated design and experiment for a one degree-of-freedom (DOF) legged mechatronic system (LMTS). A six-bar linkage mechanism, which is derived from a four-bar linkage with a symmetrical coupler point and pantograph into one, is designed, and common controllers are used to control the velocity and position loops. For system-based dynamic optimization, the design for control (DFC) approach is used to integrate the structure and control for improving dynamic performance with reduced control torque. Finally, for a rapid 3D graphical based implementation of the system, high-level computer-aided rapid system integration (CARSI) technology is used to integrate the structure design, controller design, and system implementation into the design and analytical software environment based on Pro/engineer, XML syntax, Simmechanics, and Simulink. Thus, the development time for the LMTS is reduced.

关键词: integrated design     design for control     legged mechatronic system     computer aided rapid system integration    

A novel six-legged walking machine tool for

Jimu LIU, Yuan TIAN, Feng GAO

《机械工程前沿(英文)》 2020年 第15卷 第3期   页码 351-364 doi: 10.1007/s11465-020-0594-2

摘要: The manufacture and maintenance of large parts in ships, trains, aircrafts, and so on create an increasing demand for mobile machine tools to perform operations. However, few mobile robots can accommodate the complex environment of industrial plants while performing machining tasks. This study proposes a novel six-legged walking machine tool consisting of a legged mobile robot and a portable parallel kinematic machine tool. The kinematic model of the entire system is presented, and the workspace of different components, including a leg, the body, and the head, is analyzed. A hierarchical motion planning scheme is proposed to take advantage of the large workspace of the legged mobile platform and the high precision of the parallel machine tool. The repeatability of the head motion, body motion, and walking distance is evaluated through experiments, which is 0.11, 1.0, and 3.4 mm, respectively. Finally, an application scenario is shown in which the walking machine tool steps successfully over a 250 mm-high obstacle and drills a hole in an aluminum plate. The experiments prove the rationality of the hierarchical motion planning scheme and demonstrate the extensive potential of the walking machine tool for operations on large parts.

关键词: legged robot     parallel mechanism     mobile machine tool     in-situ machining    

Footholds optimization for legged robots walking on complex terrain

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0742-y

摘要: This paper proposes a novel continuous footholds optimization method for legged robots to expand their walking ability on complex terrains. The algorithm can efficiently run onboard and online by using terrain perception information to protect the robot against slipping or tripping on the edge of obstacles, and to improve its stability and safety when walking on complex terrain. By relying on the depth camera installed on the robot and obtaining the terrain heightmap, the algorithm converts the discrete grid heightmap into a continuous costmap. Then, it constructs an optimization function combined with the robot’s state information to select the next footholds and generate the motion trajectory to control the robot’s locomotion. Compared with most existing footholds selection algorithms that rely on discrete enumeration search, as far as we know, the proposed algorithm is the first to use a continuous optimization method. We successfully implemented the algorithm on a hexapod robot, and verified its feasibility in a walking experiment on a complex terrain.

关键词: footholds optimization     legged robot     complex terrain adapting     hexapod robot     locomotion control    

Landing control method of a lightweight four-legged landing and walking robot

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0707-1

摘要: The prober with an immovable lander and a movable rover is commonly used to explore the Moon’s surface. The rover can complete the detection on relatively flat terrain of the lunar surface well, but its detection efficiency on deep craters and mountains is relatively low due to the difficulties of reaching such places. A lightweight four-legged landing and walking robot called “FLLWR” is designed in this study. It can take off and land repeatedly between any two sites wherever on deep craters, mountains or other challenging landforms that are difficult to reach by direct ground movement. The robot integrates the functions of a lander and a rover, including folding, deploying, repetitive landing, and walking. A landing control method via compliance control is proposed to solve the critical problem of impact energy dissipation to realize buffer landing. Repetitive landing experiments on a five-degree-of-freedom lunar gravity testing platform are performed. Under the landing conditions with a vertical velocity of 2.1 m/s and a loading weight of 140 kg, the torque safety margin is 10.3% and 16.7%, and the height safety margin is 36.4% and 50.1% for the cases with or without an additional horizontal disturbance velocity of 0.4 m/s, respectively. The study provides a novel insight into the next-generation lunar exploration equipment.

关键词: landing and walking robot     lunar exploration     buffer landing     compliance control    

A total torque index for dynamic performance evaluation of a radial symmetric six-legged robot

Kejia LI, Xilun DING, Marco CECCARELL

《机械工程前沿(英文)》 2012年 第7卷 第2期   页码 219-230 doi: 10.1007/s11465-012-0320-9

摘要:

This article focuses on the dynamic index and performance of a radial symmetric six-legged robot. At first the structure of the robot is described in brief and its inverse kinematics is presented. Then the dynamic model is formulated as based on the Lagrange equations. A novel index of total torque is proposed by considering the posture of the supporting legs. The new index can be used to optimize the leg’s structure and operation for consuming minimum power and avoiding unstable postures of the robot. A characterization of the proposed six-legged robot is obtained by a parametric analysis of robot performance through simulation using the presented dynamic model. Main influences are outlined as well as the usefulness of the proposed performance index.

关键词: six-legged robots     dynamic modeling     performance index    

Mechatronic design of a novel linear compliant positioning stage with large travel range and high out-of-plane

Hua LIU, Xin XIE, Ruoyu TAN, Lianchao ZHANG, Dapeng FAN

《机械工程前沿(英文)》 2017年 第12卷 第2期   页码 265-278 doi: 10.1007/s11465-017-0453-y

摘要:

Most of the XY positioning stages proposed in previous studies are mainly designed by considering only a single performance indicator of the stage. As a result, the other performance indicators are relatively weak. In this study, a 2-degree-of-freedom linear compliant positioning stage (LCPS) is developed by mechatronic design to balance the interacting performance indicators and realize the desired positioning stage. The key parameters and the coupling of the structure and actuators are completely considered in the design. The LCPS consists of four voice coil motors (VCMs), which are conformally designed for compactness, and six spatial leaf spring parallelograms. These parallelograms are serially connected for a large travel range and a high out-of-plane payload capacity. The mechatronic model is established by matrix structural analysis for structural modeling and by Kirchhoff’s law for the VCMs. The sensitivities of the key parameters are analyzed, and the design parameters are subsequently determined. The analytical model of the stage is confirmed by experiments. The stage has a travel range of 4.4 mm× 7.0 mm and a 0.16% area ratio of workspace to the outer dimension of the stage. The values of these performance indicators are greater than those of any existing stage reported in the literature. The closed-loop bandwidth is 9.5 Hz in both working directions. The stage can track a circular trajectory with a radius of 1.5 mm, with 40 mm error and a resolution of lower than 3 mm. The results of payload tests indicate that the stage has at least 20 kg out-of-plane payload capacity.

关键词: mechatronic design     linear compliant positioning stage     large travel range     high out-of-plane payload capacity     spatial parallelogram     voice coil motor     sensitivity analysis    

Terrain classification and adaptive locomotion for a hexapod robot Qingzhui

Yue ZHAO, Feng GAO, Qiao SUN, Yunpeng YIN

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 271-284 doi: 10.1007/s11465-020-0623-1

摘要: Legged robots have potential advantages in mobility compared with wheeled robots in outdoor environments. The knowledge of various ground properties and adaptive locomotion based on different surface materials plays an important role in improving the stability of legged robots. A terrain classification and adaptive locomotion method for a hexapod robot named Qingzhui is proposed in this paper. First, a force-based terrain classification method is suggested. Ground contact force is calculated by collecting joint torques and inertial measurement unit information. Ground substrates are classified with the feature vector extracted from the collected data using the support vector machine algorithm. Then, an adaptive locomotion on different ground properties is proposed. The dynamic alternating tripod trotting gait is developed to control the robot, and the parameters of active compliance control change with the terrain. Finally, the method is integrated on a hexapod robot and tested by real experiments. Our method is shown effective for the hexapod robot to walk on concrete, wood, grass, and foam. The strategies and experimental results can be a valuable reference for other legged robots applied in outdoor environments.

关键词: terrain classification     hexapod robot     legged robot     adaptive locomotion     gait control    

Sagittal SLIP-anchored task space control for a monopode robot traversing irregular terrain

Haitao YU, Haibo GAO, Liang DING, Zongquan DENG

《机械工程前沿(英文)》 2020年 第15卷 第2期   页码 193-208 doi: 10.1007/s11465-019-0569-3

摘要: As a well-explored template that captures the essential dynamical behaviors of legged locomotion on sagittal plane, the spring-loaded inverted pendulum (SLIP) model has been extensively employed in both biomechanical study and robotics research. Aiming at fully leveraging the merits of the SLIP model to generate the adaptive trajectories of the center of mass (CoM) with maneuverability, this study presents a novel two-layered sagittal SLIP-anchored (SSA) task space control for a monopode robot to deal with terrain irregularity. This work begins with an analytical investigation of sagittal SLIP dynamics by deriving an approximate solution with satisfactory apex prediction accuracy, and a two-layered SSA task space controller is subsequently developed for the monopode robot. The higher layer employs an analytical approximate representation of the sagittal SLIP model to form a deadbeat controller, which generates an adaptive reference trajectory for the CoM. The lower layer enforces the monopode robot to reproduce a generated CoM movement by using a task space controller to transfer the reference CoM commands into joint torques of the multi-degree of freedom monopode robot. Consequently, an adaptive hopping behavior is exhibited by the robot when traversing irregular terrain. Simulation results have demonstrated the effectiveness of the proposed method.

关键词: legged robots     spring-loaded inverted pendulum     task space control     apex return map     deadbeat control     irregular terrain negotiation    

Untethered quadrupedal hopping and bounding on a trampoline

Boxing WANG, Chunlin ZHOU, Ziheng DUAN, Qichao ZHU, Jun WU, Rong XIONG

《机械工程前沿(英文)》 2020年 第15卷 第2期   页码 181-192 doi: 10.1007/s11465-019-0559-5

摘要: For quadruped robots with springy legs, a successful jump usually requires both suitable elastic parts and well-designed control algorithms. However, these two problems are mutually restricted and hard to solve at the same time. In this study, we attempt to solve the problem of controller design with the help of a robot without any elastic mounted parts, in which the untethered robot is made to jump on a trampoline. The differences between jumping on hard surfaces with springy legs and jumping on springy surfaces with rigid legs are briefly discussed. An intuitive control law is proposed to balance foot contact forces; in this manner, excessive pitch oscillation during hopping or bounding can be avoided. Hopping height is controlled by tuning the time delay of the leg stretch. Together with other motion generators based on kinematic law, the robot can perform translational and rotational movements while hopping or bounding on the trampoline. Experiments are conducted to validate the effectiveness of the proposed control framework.

关键词: hopping and bounding gait     compliant mechanism     compliant contact     balance control strategy     legged locomotion control     quadruped robot    

基于Watt连杆的可重复使用运载火箭腿式可展开着陆机构——原理、原型设计和实验验证 Article

于海涛, 田保林, 闫振, 高海波, 张宏剑, 吴会强, 王英超, 石玉红, 邓宗全

《工程(英文)》 2023年 第20卷 第1期   页码 120-133 doi: 10.1016/j.eng.2022.05.015

摘要:

可重复使用运载火箭是降低太空运输成本的一种新途径。着陆机构是可重复使用运载火箭的重要组成部分,起到着陆支撑和吸收冲击的作用。本文提出了一种新型的可展开着陆机构(LDLM)。采用Watt-II型六杆机构,利用连杆变分法得到优选构型。本文建立了多目标优化范式,使得可展开着陆机构具有着陆支撑区域大、轻量化、连杆内力合理等优点,在此基础上,利用多目标遗传算法(NSGA-II)进化算法得到了可展开式着陆机构设计的最优尺寸参数。本文研制了全功能可重复使用运载火箭缩比样机,通过集成重力控制的展开方案促进展开动作,避免全范围驱动,采用双重锁紧机构提高展开状态时结构的可靠性,采用多级铝蜂窝缓冲器提供可靠的减震性能。实验结果表明,所提出的可展开式着陆机构能够提供快速平稳的展开(持续时间小于1.5 s),且对舱体的姿态扰动较小(偏航和俯仰波动小于6°)。此外,该机构在0.2 m自由落体测试中提供了足够的冲击衰减(加速度峰值小于10g)。所提出的可展开着陆机构可作为未来可重复使用运载火箭潜在的腿式起落架替代方案。

关键词: 可重复使用运载火箭(RLV)     可展开机构     优化设计    

System reliability and system resilience

《工程管理前沿(英文)》 2021年 第8卷 第4期   页码 615-619 doi: 10.1007/s42524-021-0176-y

工程 工程系统 工程系统论与工程科学体系

王连成

《中国工程科学》 2001年 第3卷 第6期   页码 15-18

摘要:

从分析工程的基本内容、性质和特征人手,引出了工程系统的概念,接着应用一般系统论思想讨论了工程系统论的研究对象和研究方法,并论述了它在整个工程科学体系中的元学科地位。

关键词: 工程     系统     系统论     学科    

Cyber–Physical Power System (CPPS): A review on measures and optimization methods of system resilience

《工程管理前沿(英文)》 2021年 第8卷 第4期   页码 503-518 doi: 10.1007/s42524-021-0163-3

摘要: The Cyber–Physical Power System (CPPS) is one of the most critical infrastructure systems in a country because a stable and secure power supply is a key foundation for national and social development. In recent years, resilience has become a major topic in preventing and mitigating the risks caused by large-scale blackouts of CPPSs. Accordingly, the concept and significance of CPPS resilience are at first explained from the engineering perspective in this study. Then, a review of representative quantitative assessment measures of CPPS resilience applied in the existing literature is provided. On the basis of these assessment measures, the optimization methods of CPPS resilience are reviewed from three perspectives, which are mainly focused on the current research, namely, optimizing the recovery sequence of components, identifying and protecting critical nodes, and enhancing the coupling patterns between physical and cyber networks. The recent advances in modeling methods for cascading failures within the CPPS, which is the theoretical foundation for the resilience assessment and optimization research of CPPSs, are also presented. Lastly, the challenges and future research directions for resilience optimizing of CPPSs are discussed.

关键词: Cyber–Physical Power System     resilience assessment     resilience optimization     cascading failure modeling    

Discussion on the System Optimization of the Energy Development Strategy and Plan

Da-di Zhou

《工程管理前沿(英文)》 2014年 第1卷 第2期   页码 147-152 doi: 10.15302/J-FEM-2014022

摘要: Energy is an important basis for economic and social development, and is a critical economic sector. Due to the complexity of the energy system, the interactive relationship with economic and social development, and the enormous investment involved, the optimization of the energy system is of great significance. We should make efforts to develop targets and specific approaches for the rational and optimal development of an energy system in order to avoid big losses due to systematic mistakes.

关键词: energy development strategy     planning system     system optimization    

Distributed monitoring and diagnosis system for hydraulic system of construction machinery

Xiaohu CHEN, Wenfeng WU, Hangong WANG, Yongtao ZHOU,

《机械工程前沿(英文)》 2010年 第5卷 第1期   页码 106-110 doi: 10.1007/s11465-009-0089-7

摘要: This paper mainly presents a distributed monitoring and diagnosis system for the hydraulic system of construction machinery based on the controller area net (CAN) field bus. The hardware of the distributed condition monitoring and fault diagnosis system is designed. Its structure including the sensors, distributed data acquisition units, central signal processing unit, and CAN field bus is introduced. The software is also programmed. The general software design and its realization are studied in detail. The experiments and applications indicate that the distributed condition monitoring and fault diagnosis system can effectively realize its function of real-time online condition monitoring and fault diagnosis for the hydraulic system of construction machinery.

关键词: construction machinery     hydraulic system     distributed condition monitoring     controller area net (CAN) field bus     fault diagnosis    

标题 作者 时间 类型 操作

Integrated design of legged mechatronic system

Chin-Yin CHEN, I-Ming CHEN, Chi-Cheng CHENG

期刊论文

A novel six-legged walking machine tool for

Jimu LIU, Yuan TIAN, Feng GAO

期刊论文

Footholds optimization for legged robots walking on complex terrain

期刊论文

Landing control method of a lightweight four-legged landing and walking robot

期刊论文

A total torque index for dynamic performance evaluation of a radial symmetric six-legged robot

Kejia LI, Xilun DING, Marco CECCARELL

期刊论文

Mechatronic design of a novel linear compliant positioning stage with large travel range and high out-of-plane

Hua LIU, Xin XIE, Ruoyu TAN, Lianchao ZHANG, Dapeng FAN

期刊论文

Terrain classification and adaptive locomotion for a hexapod robot Qingzhui

Yue ZHAO, Feng GAO, Qiao SUN, Yunpeng YIN

期刊论文

Sagittal SLIP-anchored task space control for a monopode robot traversing irregular terrain

Haitao YU, Haibo GAO, Liang DING, Zongquan DENG

期刊论文

Untethered quadrupedal hopping and bounding on a trampoline

Boxing WANG, Chunlin ZHOU, Ziheng DUAN, Qichao ZHU, Jun WU, Rong XIONG

期刊论文

基于Watt连杆的可重复使用运载火箭腿式可展开着陆机构——原理、原型设计和实验验证

于海涛, 田保林, 闫振, 高海波, 张宏剑, 吴会强, 王英超, 石玉红, 邓宗全

期刊论文

System reliability and system resilience

期刊论文

工程 工程系统 工程系统论与工程科学体系

王连成

期刊论文

Cyber–Physical Power System (CPPS): A review on measures and optimization methods of system resilience

期刊论文

Discussion on the System Optimization of the Energy Development Strategy and Plan

Da-di Zhou

期刊论文

Distributed monitoring and diagnosis system for hydraulic system of construction machinery

Xiaohu CHEN, Wenfeng WU, Hangong WANG, Yongtao ZHOU,

期刊论文